Library user behavior analysis : use in economics and management
Part of : WSEAS transactions on business and economics ; Vol.11, 2014, pages 107-116
Issue:
Pages:
107-116
Author:
Abstract:
This paper develops a method of bibliomining, including the characteristics of the various stages of the process. Furthermore, the whole process is applied to research conducted in 2012 in the largest public library in the Czech Republic – the Municipal Library of Prague. The results are interpreted and a proposal for continuation of research is also included.
Subject (LC):
Keywords:
bibliomining, cluster analysis, economics, library user behavior, management, public library
Notes:
Περιέχει σχήματα, πίνακες και βιβλιογραφία
References (1):
- [1] R. Agrawal, H. Mannila, R. Srikant, H.Toivonen, I. Verkamo, Fast Discovery ofAssociation Rules. In Advances in KnowledgeDiscovery and Data Mining, U. Fayyad, G.Piatetsky-Shapiro, P. Smyth, R. Uthurusamy(Eds.), Menlo Park, California: AAAI Press,1996, pp.307-328.[2] J. Bollen, R. Luce, S. Vemulapalli, W. Xu,Usage Analysis for the Identification ofResearch Trends in Digital Libraries. D-LibMagazine, Vol.9, No.5, 2003, available onlineat: http://www.dlib.org/dlib/may03/bollen/05bollen.html.[3] L. Breiman, J.H. Friedman, R.A. Olshen, C.J.Stone, Classification and Regression Trees,Belmont, California, Wadsworth, 1984.[4] British Library, Measuring our Value, BritishLibrary Annual Report 2003/2004, 2004,available online at: http://www.bl.uk/pdf/measuring.pdf.[5] U. M. Fayyad, G. Piatetsky-Shapiro, P. Smyth,From Data Mining to Knowledge Discovery:An Overview. Advances in KnowledgeDiscovery and Data Mining, AI Magazine,Vol.17, No.3, 1996, pp.37-54.[6] E. Garfield, A.I. Pudovkin, V.S. Istomin,Mapping the Output of Topical Searches in theWeb of Knowledge and the Case of WatsonCrick,Information Technology and Libraries,Vol.22, No.4, 2003, pp.183-187.[7] A. Geyer-Schulz, A. Neumann, A. Thede, AnArchitecture for Behavior-Based LibraryRecommender Systems, InformationTechnology and Libraries, Vol.22, No.4, 2003,pp.165-174.[8] K. Guenther, Applying Data Mining Principlesto Library Data Collection, Computers inLibraries, Vol.20, No.4, 2000, pp.60-63.[9] P. Hajek, Municipal Credit Rating Modellingby Neural Networks, Decision SupportSystems, 2011, Vol.51, No.1, pp.108-118.[10] P. Hajek, V. Olej, Municipal CreditworthinessModelling by Clustering Methods. In 10thInternational Conference on EngineeringApplications of Neural Network, EANN07,Thessaloniki, Greece, 2007, pp.168-177.[11] S.C. Kao, H.C. Hang, C.H. Lin, DecisionSupport for the Academic Library AcquisitionBudget Allocation via Circulation DatabaseMining, Information Processing andManagement: an International Journal,Vol.39, No.1, 2003, pp.133-147.[12] R. Kostoff, J. del Rio, J. Humenik, E. Garcia,A. Ramirez, Citation Mining: Integrating TextMining and Bibliometrics for Research UserProfiling, Journal of the American Society forInformation Science and Technology, Vol.52,No.13, 2001, pp.1148-1156.[13] X.B. Li, V.S. Jacob, Adaptive Data Reductionfor Large-scale Transaction Data, EuropeanJournal of Operational Research, Vol.188,No.3, 2008, pp.910-924.[14] T. Lynch, A Study of Taxpayer Return onInvestment (ROI) in Florida Public Libraries:Part III - REMI Details. Tallahassee, FL: StateLibrary and Archives of Florida, 2004.[15] J.R. Matthews, Measuring for Results – TheDimensions of Public Library Effectiveness,Libraries Unlimited, London, 2004.[16] S. Nicholson, The Basis for Bibliomining:Frameworks for Bringing together Usage-basedData Mining and Bibliometrics through DataWarehousing in Digital Library Services,Information Processing and Management,Vol.42, 2006, pp.785-804.[17] S. Nicholson, The Bibliomining Process: DataWarehousing and Data Mining for LibraryDecision-Making, Information Technology andLibraries, Vol.22, No.4, 2003, pp.146-151.[18] Ohio, Value for Money: Southwestern Ohio’sReturn from Investment in Public Library,Driscoll & Fleeter, Columbus, OH, 2006.[19] C. Papatheodorou, S. Kapidakis, M. Sfakakis,A. Vassiliou, Mining User Communities inDigital Libraries, Information Technology andLibraries, Vol.22, No.4, 2003, pp.152-157.[20] D. Pierrakos, G. Paliouras, C. Papatheodorou,C.D. Spyropoulos, Web Usage Mining as aTool for Personalization: A Survey, UserModeling and User-Adapted InteractionJournal, Vol.13, No.4, 2003, pp.311-372.[21] A. Repanovici, Information TechnologyImplication in Student Behaviour forInformation Literacy Skills. In Proceedings ofthe 4th WSEAS/IASME InternationalConference on Educational Technologies(EDUTE'08), Corfu, Greece, October 26-28,2008, pp.81-86.[22] A. Repanovici, M. Turcanu, L. Cristea, M.Baritz, I. Moisil, Smart Library: RFIDImplementation in Libraries. In Proceedings ofthe 8th WSEAS Int. Conf. on ArtificialIntelligence, Knowledge Engineering & DataBases (AIKED '09), 2009, pp.523-526.[23] J. Stejskal, P. Kotatkova Stranska, K.Matatkova, P. Hajek, Public Services ValueDetermining – Case of Public Libraries. InProceedings from 4th WSEAS WorldMulticonference on Applied Economics,Business and Development (AEBD 12), Porto,2012, pp.140-145.[24] J. Stejskal, K. Matatkova, Descriptive analysisof the regional innovation system - novelmethod for public administration authorities. InTransylvanian Review of AdministrativeSciences (39), pp. 91-107.