Light emitting diodes and optically stimulated luminescence dating in archaeology : an overview

Part of : Mediterranean archaeology & archaeometry : international journal ; Vol.15, No.2, 2015, pages 277-291

Issue:
Pages:
277-291
Author:
Abstract:
Among the multiple applications of Light emitting diodes (LEDs), archaeology and earth sciences have benefited too concerning the determination of time (chronology) based on the thermoluminescene (TL) and optically stimulated luminescence (OSL) method of dating artifacts, material culture of archaeological and geoarchaeological significance. Blue Light emitting diodes (LED) is mostly used for stimulation and bleaching of luminescence, in lieu of green and IR LEDs. Ancient inorganic materials made of geological rocks (carving, knapping, mixing, firing) are either fired in antiquity above 450o C or sun exposed for a short time (surface luminescence dating) and thus the electron traps are completely bleached for the “zero time” clock to set up. The importance of blue LEDs in archaeology was the research product of 2014 Nobel Prize in Physics. On the occasion of blue LED invention and Nobel Prize we offer an extended overview of the development of semiconductor physics focused on LEDs (blue, green, IR) and linked to the principles of OSL dating in archaeology.
Subject:
Subject (LC):
Keywords:
luminescence, LED, chronology, semiconductors, dopants, archaeology, nobel prize, blue green IR light
Notes:
Corresponding author: Ioannis Liritzis (liritzis@rhodes.aegean.gr)
References (1):
  1. Aitken, M. J. (1985) Thermoluminescence Dating, Oxford Academic Press.Aitken, M. J., (1998) An introduction to Optical Dating, Oxford University Press, Oxford, UK.Akasaki, I., Amano, H., Koide, N., Kotaki, M. and Manabe, K. (1993a) Conductivity control of GaN and fabrication of UV/blue GaN light emitting devices. Physica B, Vol. 185, 428.Akasaki, I., and Amano, H. (1992) Room temperature ultraviolet/blue light emitting devices based on AlGaN/GaN multi-layered structure. Conference on Solid State Devices and Materials, Vol. 327.Akasaki, I., Amano, H., Kito, M., and Hiramatsu, K. (1991) Photoluminescence of Mg-doped p-type GaN and electroluminescence of GaN p-n junction LED. Journal of Luminescence, Vol. 48 & 49, 666.Akasaki, I., Amano, H., Murakami, H., Sassa, M., Kato, H. and Manabe, K. (1993b) Growth of GaN and AlGaN for UV/blue p-n junction diodes. Journal of Crystal Growth Journal of Crystal Growth, Vol. 128, 379.Amano, H., Akasaki, I., Kozawa, T., Hiramatsu, K., Sawaki, N., Ikeda, K., and Ishii, Y. (1988) Elec-tron beam effect on blue luminescence of Zinc – doped GaN. Journal of Luminescence, Vol. 40&41, 121.Blanc, J., Bube, R. H., and Weisberg, L. R. (1964) Behaviour of lattice defects in GaAs. J. Phys. Chem. Solids, Pergamon Press 25, Vol. 225.Boreas. Special Issue: Luminescence dating of Quaternary sediments. Volume 37, Issue 4Botter-Jensen, L., and Duller, G.A.T., Murray, A.S., and Banerjee, D. (1999a) Blue light emitting di-odes for optical stimulation of quartz in retrospective dosimetry and dating. Radiat. Prot. Dosim., Vol. 84, 335-340.Botter-Jensen, (2000) Development of optically stimulated luminescence techniques using natural minerals and ceramics, and their application to retrospective dosimetry. Riso-R-1211 (EN), 74–85.Botter-Jensen, L., Andersen, C.E., Duller, G.A.T., Murray, A.S. (2003) Developments in radiation, stimulation, and observation facilities in luminescence measurements. Radiat. Meas., Vol. 37, p. 535.Botter-Jensen, L., and Duller, G.A.T. (1992) A new system for measuring optically stimulated lu-minescence from quartz samples. Nucl. Tracks Radiat. Meas.,Vol. 20, 549.Botter-Jensen, L., Mejdahl, V., and Murray, A.S. (1999) New light on OSL. Quat. Geochron., Vol. 18, 303.Botter-Jensen, L., Mejdahl, V., and Murray, A.S. (1999b) New light on OSL. Quat. Sci. Rev., Vol. 18, 303.Cho, A. Y., and Arthur, J. R. (1975) Molecular Beam Epitaxy. Progress in Solid-State Chemistry, Vol. 10, Part 3, 157-191.Choi, J.H., Kim, M.J., Cheong, C.S., and Hong, D.G. (2014) Development of OSL system using two high-density blue LEDs equipped with liquid light guides. Nuclear Instruments and Meth-ods in Physics Research B, Vol. 323, 19.Chithambo, M.L. (2011) A time-correlated photon counting system for measurement of pulsed op-tically stimulated luminescence. J. Lumin., Vol. 131, 92.Craford, M. G., Shaw, R. W., Herzog, A. H., and Groves, W.O. (1972) Radiative recombination mechanisms in GaAsP diodes with and without nitrogen doping. J. Appl. Phys., Vol. 43, 4075.Curie, J.D., (1963) Luminescence in Crystals. John Wiley Sons Inc., New York.Cusano, D.A. (1964) Radiative recombination from GaAs directly excited by electron beams. Solid State Communications, Vol. 2, 353.Dyakonov, M.I. (2008), Spin Physics in Semiconductors. Springer Series in Solid-State Sciences, Vol. 157.Fanderlik, I., (1991) Silica Glass and its Application. Glass Science and Technology 11, ELSEVIER, Amsterdam.Feathers, J. K. (2003) Use of luminescence dating in archaeology. Measurement Science and Technolo-gy, Vol. 14, 1493.Fuchs, M., Lang, A. (2009) Luminescence dating of hillslope deposits – a review. Geomorphology, Vol. 109, 17.Galbraith, R.F., Roberts, R.G., Laslett, G.M., Yoshida, H., and Olley, J.M. (1999) Optical dating of single and multiple grains of quartz from Jinmium rock shelter, northern Australia: Part I, Experimental design and statistical models. Archaeometry, Vol. 41, 339.Galloway, R.B. (1991) A versatile 40-sample system for TL and OSL investigations. Nucl. Tracks Ra-diat. Meas., Vol. 18, 265.Galloway, R.B. (1992) Towards the use of green light emitting diodes for the optically stimulated luminescence dating of quartz and feldspar. Meas. Sci. Technol., Vol. 3, 330.Galloway, R.B. (1993) Stimulation of luminescence using green light emitting diodes. Radiat. Prot. Dosim., Vol. 47, 679.Galloway, R.B., Hong, D.G., and Napier, N.J. (1997) A substantially improved green-light-emitting diode system for luminescence determination. Meas. Sci. Technol., Vol. 8, 267.Galloway, R.B., and Neal, M.A. (1998) Green light emitting diodes used in Luminescence. Ancient TL, Vol. 6, p. 1.Grundmann, M., (2006) The Physics of Semiconductors. Springer-Verlag Berlin Heidelberg.Hall, R.N., Fenner, G. E., Kingsley, J. D., Soltys, T.J. and Carlson, R.O. (1962) Coherent light emis-sion from GaAs junctions. Phys. Rev. Lett., Vol. 9, 366.Hashimoto, T., Nakagawa, T., Hong, D.G., and Takano, M. (2002) An automated system for both red/blue thermoluminescence (TL) and optically stimulated luminescence (OSL) meas-urement. J. Nucl. Sci. Technol., Vol. 39, 108.Holonyak, N. Jr., Bevacqua, S.F., Bielan, C.V., Carranti, F.A., Hess, B.G., and Lubowski, S.J. (1963) Electrical properties of Ga(As1-xPx) p-n junctions. Proceedings of the IEEE, Vol. 51, 2.Hong, D.G., and Galloway, R.B. (2000) Comparison of equivalent dose values determined by lu-minescence stimulation using blue and green light. Nucl. Instr. Meth. Phys.Res. B, Vol. 160, 59.Huntley, D.J. , Godfrey-Smith, D.I., and Thewalt, M.L.W. (1985) Optical dating of sediments. Na-ture, Vol. 313, 105.Jain, M., and Lindvold, L.R. (2007) Blue light stimulation and Linearly Modulated Optically Stimu-lated Luminescence. Ancient TL, Vol. 25, 2.Joyce, B.A. (1990) Molecular beam epitaxy - fundamentals and current status. Contemporary Physics, Vol. 31, No 3, 195-197.Khan, M. R. H., Koide, Y., Sawaki, N., and Akasaki, I. (1986) Behaviour of Zn as dopant in the pho-toluminescence of AlxGa1-xN. Solid State Communications, Vol. 57, 17.Kittel, C. , (2005) Introduction to solid state physics 8th edition, John Wiley & Sons, Inc, NJ.Kofstad, P., (1988) High Temperature Corrosion. ELSEVIER, London and New York.Koide, Y., Itoh, H., Sawaki, N., Akasaki, I., and Hashimoto, M. (1986) Epitaxy growth of AlxGa1−xN by MOVPE. Journal of the Electrochemical Society, Vol. 133, (9), 1956.Li, J., Wang, J., Liu, Z., and Poppe, A. (2014) Solid-State Physics Fundamentals of LED Thermal Behav-io. In Lesance, C.J.M & Poppe, A (eds), Thermal management for LED applications. Ch.2, 15-52, Springer New York.Liritzis, I., and Galloway, R.B. (1999) Dating implications from solar bleaching of thermolumines-cente of ancient marble. J Radioanal. Nucl. Chem., Vol. 241, 361.Liritzis, I. (2000) Advances in thermo- and opto- luminescence dating of environmental materials (sedimentary deposits): part I: techniques. GLOBAL-NEST, vol.2, No 1, 3-27, also, part II: applications. GLOBAL-NEST, Vol.2, No 1, 29-49.Liritzis, I., Galloway, R.B., Hong, D., and Kyparissi-Apostolika, N. (2002) OSL dating of three pre-historic ceramics from Theopetra cave, Greece: a case study. Mediterranean Archaeology & Archaeometry, Vol. 2, 35.Liritzis, I., Kitis, G., Galloway, R.B., Vafiadou, A., Tsirliganis, N., and Polymeris, G. (2008) Probing luminescence dating of archaeologically significant carved rock types. Mediterranean Ar-chaeology & Archaeometry, Vol. 8, 61.Liritzis, I. (2010) Strofilas (Andros Island, Greece): new evidence for the cycladic final neolithic pe-riod through novel dating methods using luminescence and obsidian hydration. Journal of Archaeological Science (Elsevier), Vol. 37, 1367.Liritzis, I., Singhvi, A.K., Feathers, J.K., Wagner, G.A., Kadereit, A., Zacharias, N. and Li, S.-H., (2013a) Luminescence Dating in Archaeology, Anthropology and Geoarchaeology: An Overview. Springer Briefs in Earth System SciencesLiritzis, I., et al. (2013b) Advances in surface luminescence dating : some new data from three se-lected Mediterranean sites. Mediterranean Archaeology & Archaeometry, Vol. 13, 105.Liritzis, I., Aravantinos, V., Polymeris, G.S., Zacharias, N., Fappas, I., Agiamarniotis, G., Sfampa, I.K., Vafiadou, A., and Kitis, G., (2014) Witnessing prehistoric Delphi by luminescence da-ting. PALEVOL (Comptes Redues de l’ Academie des Sciences, Paris), in press.Liritzis, I., and Vafiadou, A. (2014) Surface luminescence dating of some Egyptian monuments. Journal of Cultural Heritage. Journal of Cultural Heritage (in press)McKeever, S.W.S , (1985) Thermoluminescence of solids. CUP, Cambridge.Murakami, H., Asahi, T., Amano, H., Hiramatsu, K., Sawaki, N., and Akasaki, I. (1991) Growth of Si-doped A1xGa1-xN on (0001) sapphire substrate by metalorganic vapor phase epitaxy. Journal of Crystal Growth, Vol. 115, 648.Murray, A.S., and Olley, J.M. (2002) Precision and accuracy in the optically stimulated lumines-cence dating of sedimentary quartz: a status review. Geochronometria, Vol. 21, 1.Nakamura, S., Mukai, T., and Senoh, M. (1992) In situ monitoring and Hall measurements of GaN grown with GaN buffer layers. Journal of Applied Physics, Vol. 71, 5543.Nakamura, S., Mukai, T., Senoh, M., Nagahama, S., and Iwasa, N. (1993) In x Ga(1−x)N/In y Ga(1−y)N superlattices grown on GaN films. Journal of Applied Physics, Vol. 74, 3911.Nakamura, S., Senoh, M., and Mukai, T. (1993) Highpower InGaN/GaN double heterostructure violet light emitting diodes. Applied Physics Letters, Vol. 62, 2390.Ohki, Y. , Asao, I., and Akasaki, I. (1974) Vapor phase epitaxial growth of Nitrogen-doped In1-xGaxP alloys. Journal of Crystal Growth,Vol. 24/25, 244Preusser, F., Degering, D., Fuchs, M., Hilgers, A., Kadereit, A., Klasen, N., Krbetschek, M., Richter, D., and Spencer, J. (2008) Luminescence dating: basics, methods and applications. Quater-nary Science Journal, Vol. 57, 95.Redfield, D., Bube, R., (1996) Photo-induced Defects in Semiconductors. Cambridge University Press.Richter, D. (2007) Advantages and limitations of thermoluminescence dating of heated flint from paleolithic sites. Geoarchaeology, Vol. 22, 671.Roberts, R.G. (1997) Luminescence dating in archaeology: from origins to optical. Radiat. Meas., Vol. 27, 819.Roberts, R.G., Walsh, A., Murray, A., Olley, J., Jones, R., Morwood, M., Tuniz, C., Lawson, E., Macphail, M., Bowdery, D., and Naumann, I. (1997) Luminescence dating of rock art and past environments using mud-wasp nests in northern Australia. Nature, Vol. 387, 696.Round, H. J. (1907) A note on Carborundum. Electrical World., Vol. 49, 309.Rupprecht, H., Woodall, J. M., and Pettit, G. D. (1967) Efficient visible electroluminescence at 300°K FROM Ga1x Al x As pn junctions grown by liquid phase epitaxy. Applied Physics Letters, Vol. 11, 81.Schubert, E.F. (1993) Doping in III-V Semiconductors. Cambridge University Press.Serway, R.A., Moses, C.J. and Moyer, C.A., (2005), Modern Physics, 3rd edition, Thomson Learning Inc., Belmont USA.Shklovskii, B.I. and Efros, A.L., (1984) Electronic Properties of Doped Semiconductors. Springer – Ver-lag, Berlin Heidelberg.Sze, S.M., (1985) Semiconductor Devices Physics and Technology. Bell Telephone Laboratories Inc.Spooner, N.A., and Questiaux, D.G. (1989) Optical dating Achenheim beyond the Eemian using green and infrared stimulation. in: Long and Short Range Limits in Luminescence Dating. RLAHA Occasional Publication, Vol. 9, 97.Stevens-Kalceff, M.A., and Philips, M.R., (1995) Cathodoluminescence microcharacterization of the defect structure of quartz. Phys. Rev. B, Vol. 52, 3122.Tilley, R. (2004) Understanding solids: The science of materials. John Willey and Sons LTD, ChichesterWilliams, F.W and Hall, R (1978) Luminescence and the light emitting diode. Pergamon Press, Oxford.Yu, P.Y., and Cardona, M. (1999) Fundamentals of Semiconductors, 3rd ed. Springer.Yukihara, E.G., and Mckeever S.W.S. (2011) Optically stimulated luminescence: fundamentals and ap-plications. Wiley, Sussex, 362