Nanosized zinc oxide deposited on single wall carbon nanotubes composites for nitrogen dioxide-sensor in museums and art galleries monitoring

Part of : Mediterranean archaeology & archaeometry : international journal ; Vol.14, No.1, 2014, pages 25-35

Issue:
Pages:
25-35
Section Title:
Articles
Author:
Abstract:
The aim of this investigation is to develop a material and technique for detects the smallest traces of poison gases and for the instantaneous rate of atmospheric corrosion of archaeological materials indoor. This paper describes the development and use of a single walled carbon nanotubes with ZnO (SWCNT/ZnO) composites as a Networks to investigate it as resistive gas sensors for NO2 detection. Sensor film was coated on an sapphire substrate by spin coater. At room temperature, SWCNT/ZnO composites with equal weight ratio have shown quite high sensitivity to NO2 concentrations as low as 1 ppm, this gives the opportunity to us it as a sensor to control the environment of the places where the cultural heritage materials are found. All ZnO (SWCNT/ZnO) tested sensors exhibit high stability and relatively low response and recovery time. The highest response values of the composite were achieved at temperatures ranging between 100 and 300°C and gas concentrations higher that 50 ppm. For all gas concentrations, the SWCNT/ZnO sensor shows much impressive performance at temperatures higher than 100°C compared to pure SWCNT sensor. The results show that this type of material is surprising, revealed that the measured sensitivity upon exposure to NO2 strongly depends on the changing matrix of the microstructure and the preparation conditions of the composite material. The gas detection mechanisms as well as the optimal gas sensing parameters were discussed.
Subject:
Subject (LC):
Keywords:
Zinc Oxide, nanotubes, SWCNT, gas sensors, NO2, Cultural Heritage, museums, Art galleries
References (1):
  1. Johansson, L.G., Lindqvist, O., Mangio, R. (1991) Corrosion of calcareous stones in humid air containingSO2 and NO2. Durability of Building Material 5, 439–449.Malaga-Starzec, K., Panas, I., Lindqvist, J.E., Lindqvist, O. (2003) Efflorescence on thin sections ofcalcareous stones. Journal of Cultural Heritage 4, 313–318.Gysels, K., Delalieux, F., Deutsch, F., Van Grieken, R., Camuffo, D., Bernardi, A., Sturaro, G., Busse,H., Wieser, M. (2004) Indoor environment and conservation in the Royal Museum of FineArts, Journal of Cultural Heritage 5, 221–230, Antwerp, Belgium.Odlyha, M., Cohen, NS., Foster, GM., West, R. (2000) Dosimetry of paintings: determination of thedegree of chemical change in museum exposed test paintings (lead white tempera) bythermal analysis and infra-red spectroscopy. Thermochim Acta 53, 365.Solinger, Janet W., (1990) Museums and universities Choices, New York.Koshizaki, N., Oyama, T. (2000) Sensing characteristics of ZnO-based NOx sensor. Sensor Actuators B66, 119–121.Baratto, C., Sberveglieri, G., Onischuk, A., Caruso, B., di Stasio, S. (2004) Low temperature SelectiveNO2 sensors by nanostructured fibres of ZnO. Sensor Actuators B: Chem. 100, 261–265.Wang, J.X., Sun, X.W., Yang, Y., Huang, H., Lee, Y.C., Tan, O.K., Vayssieres, L. (2006) Hydrothermallygrown oriented ZnO nanorod arrays for gas sensing application. Nanotechnology 17,4995–4998.Hyodo, T., Abe, S., Shimizu, Y., Egashira, M. (2003) Gas-sensing properties of ordered mesoporousSnO2 and effects of coatings thereof. Sensor Actuators B: Chem. 93, 590–600.Tamaki, J., Hayashi, A., Yamamoto, Y. (2004) Highly sensitive detection of dilute nitrogen dioxideusing tungsten oxide thick film sensor. Journal of the Ceramic Society of Japan, vol. 112(1305),546–549.Jun, H., Yun, J., Cho, K., Hwang I., Lee, J., Kim, S. (2009) Necked ZnO nanoparticle-based NO2 sensorswith high and fast response. Sensors and Actuators B 140, 412–417Valentini, L. Armentano, I., Kenny, J.M., Cantalini, C., Lozzi, L., Santucci, S. (2003) Sensors for subppmNO2 gas detection based on carbon nanotube thin films, Appl. Phys. Lett. 82, 961–963.Kong, J., Franklin, N.R., Zhou, C.W., Chapline, M.G., Peng, S., Cho, K.J., Dai, H.J. (2000) Nanotubemolecular wires as chemical sensors. Science 287 (5453), 622–625.Pengfei Q.F., Vermesh, O., Grecu, M., Javey, A., Wang, O., Dai, H.J., Peng, S., Cho, K.J. (2003) Towardlarge arrays of multiplex functionalized carbon nanotube sensors for highly sensitiveand selective molecular detection, Nano Lett. 3 (3), 347–351.Lucci, M., Reale, A., Di Carlo, A., Orlanducci, S., Tamburri, E., Terranova, M.L., Davoli, I., Natale,C., Di D’Amico, A., Paolesse, R. (2006) Optimization of a NOx gas sensor based on singlewalled carbon nanotubes. Sensor Actuators B: Chem. 118 (1–2), 226–231.Zhang, J., Boyd, A., Tselev, A., Paranjape, M., Barbara, P.(2006) Mechanism of NO2 detection in carbonnanotube field effect transistor chemical sensors. Appl. Phys. Lett. 88 (12), 3.Nguyen, H.Q., Huh, J.S. (2006) Behavior of single-walled carbon nanotube-based gas sensors at varioustemperatures of treatment and operation. Sensors and Actuators B, vol. 117, no. 2, 426–430.Shi, W., Johnson, K. (2003) Gas adsorption on heterogeneous single-walled carbon nanotubes bundles.Phys. Rev. Lett. 91 (1), 015504.Suehiro, J., Zhou, G., Imakiire, H., Ding, W., Hara, M. (2005) Controlled fabrication of carbon nanotubeNO2 gas sensor using dielectrophoretic impedance measurement. Sensors and ActuatorsB, vol. 108(1-2), 398–403.Cho, W.S., Moon, S.I., Paek, K.K., Lee, Y.H., Park, J.-H., Ju, B.K. (2006) Patterned multiwall carbonnanotube films as materials of NO2 gas sensors. Sensors and Actuators B, vol. 119(1), 180–185.Chiang, I.W., Brinson, B.E., Smalley, R.E., Margrave, J.L., Hauge, R.H. (2001) Purification and Characterizationof Single-Wall Carbon Nanotubes, J. Phys. Chem. B, 105, 1157-1161.Barsan, N., Weimar, U. (2001) Conduction model of metal oxide gas sensors. J. Electroceram. 7, 143–167.Peng, S., Cho, K., Qi, P., Dai, H. (2004) Ab Initio study of CNT NO2 gas sensor. Chem. Phys. Lett. 387,271–276.Cuniberti, G., Fagas, G., Richter, K. (2007) Introducing Molecular Electronics, (Lecture Notes in Physics),Springer-Verlag. Berlin.Loiseau, A., Launois, P., Petit, P., Roche, S., Salvetat, J.P. (2006) Understanding Carbon Nanotubes:From Basics to Applications, (Lecture Notes in Physics), Springer.Nikolaev, P., Bronikowski, M.J., Bradley, R.K., Rohmund, F., Colbert, D.T., Smith, K.A., Smalley,R.E. (1999) Gas-phase catalytic growth of single-walled carbon nanotubes from carbonmonoxide. Chem. Phys. Lett., 91, 313.Kong, J., Soh, H.T., Cassell, A.M., Quate, C.F., Dai, H. (1998) Synthesis of Individual Single-WalledCarbon Nanotubes on Patterned Silicon Wafers. Nature, 395, 878.Rinzler, A.G., Liu, J., Dai, H., Nikolaev, P., Huffman, C.B., Rodriguezmacias, F.J., Boul, P.J., Lu,A.H., Heymann, D., Colbert, D.T., Lee, R.S., Fischer, J.E., Rao, A.M., Eklund, P.C., Smalley,R.E. (1998) Large-scale purification of single-wall carbon nanotubes: process, product, andcharacterization. Appl. Phys. A, 67, 29-27.Vázquez, E., Georgakilas, V., Prato, M. (2002) Microwave-assisted purification of HIPCO carbonnanotubes, Chem. Commun., 2308–2309.Duesberg, G.S., Blau, W., Byrne, H.S., Muster, S., Burghard, M., Roth, S. (1999) Chromatography ofCarbon Nanotubes. Synth. Met., 103, 2484.Zimmerman, J.L., Bradley, R.K., Huffman, C.B., Hauge R.H., Margrave, J.L. (2000) Gas-Phase Purificationof Single-Wall Carbon Nanotubes. Chemistry of Materials, 12, 1361-1366.Rao, A.M., Richter, E., Bandow, S., Chase, B., Eklund, P.C., Williams, K.W., Menon, M., Subbaswamy,K.R., Thess, A., Smalley, R.E., Dresselhaus, G., Dresselhaus, M.S. (1997) Infrared andRaman spectroscopic studies of single-wall carbon nanotubes. Science, 275, 187-191.Jishi, R.A., Venkataraman, L., Dresselhaus, M.S., Dresselhaus, G. (1993) Phonon Modes in CarbonNanotubules. Chem. Phys. Lett., 209, 77-82.Bandow, S., Asaka, S., Saito, Y., Rao, A.M., Grigorian, L. ,Richter, E., Eklund, P.C. (1998) Effect ofthe Growth Temperature on the Diameter Distribution and Chirality of Single-Wall CarbonNanotubes. Phys. Rev. Lett., 80, 3779-3782.Kurti, J., Kresse, G., Kuzmany, H. (1998) First-principles calculation of the radial breathing mode ofsingle-wall carbon nanotubes. Phys. Rev., B 58, 8869.Sanchez-Portal, D., Artacho, E., Soler, J.M., Rubio, A., Ordejon, P. (1999) Ab initio structural, elastic,and vibrational properties of carbon nanotubes, Phys. Rev. B, 59, 12678.Jorio, A., Saito, R., Hafner, J.H., Lieber, C.M., Hunter, M., McClure, T., Dresselhaus, G., Dresselhaus,M.S. (2001) Structural (n;m) determination of isolated single-wall carbon nanotubes by resonantRaman scattering, Phys. Rev. Lett., 86, 1118.Bachilo, S.M., Strano, M.S., Kittrell, C., Hauge, R.H., Smalley, R.E., Weisman, R.B. (2002) Structureassignedoptical spectra of single-walled carbon nanotubes. Science. 298, 2361.Albiss, Borhan A., Sakhaneh, Wassef A., Jumah, Inshad and Obaidat, Ihab M. (2010) NO2 Gas SensingProperties of ZnO/Single-Wall Carbon Nanotube Composites. IEEE sensors journal, vol.10(12), 1807-1812.Langmaier, J., Opekar, F., Samec, Z. (1997) Amperometric solid-state NO2 sensor based on plasticizedPVC matrix containing a hydrophobic electrolyte. Sensors and Actuators B 41, 1-6.West, R.H., Odlyha, M., Pratt, K., Roberts, A., Hutton, S. (2004) Monitoring the environmental degradationof paint dosimeters used to assess risk for fine art paintings on display by XPS.Surf. Interface Anal. 36, 862–865.